Market Updates, Research
Ginger, Other Plant Compounds Found to Delay Diabetic Complications
Ginger compounds and some flavonoids are effective at stopping physiological processes that lead to diabetic complications.
By: Sean Moloughney
Editor
Scientific evidence is building that plant compounds may be a safe and effective alternative to approved pharmaceutical treatments for type 2 diabetes because they provide a natural means to prevent diabetic complications without side effects like stomach upsets, skin rashes, dizziness, weight gain and increased risk for liver disease common to prescription diabetes drugs.
Shengmin Sang, PhD, associate professor of functional foods with the North Carolina Agricultural and Technical State University (NCA&T) Center for Excellence in Post-harvest Technologies at the NC Research Campus in Kannapolis, NC, published a new study that points specifically to ginger. He found that two compounds in the ancient spice stopped physiological processes that lead to the development of diabetic complications such as heart, kidney, eye and neurological disorders. These findings support Dr. Sang’s previous research that found flavonoids in other foods have similar properties.
Plant Compounds, AGEs and Diabetic Complications
Published in Chemical Research in Toxicology, the scientific paper “Bioactive Ginger Constituents Alleviate Protein Glycation by Trapping Methylglyoxal” investigated the ability of gingerols and shogaols to prevent the formation of advanced glycation end products (AGEs) via trapping methylglyoxal (MGO). MGO and glyoxal (GO) are reactive carbonyl compounds that are by-products of autooxidation of glucose, lipid peroxidation and protein glycation, a process where protein and glucose interact interfering with the function of protein in the body. They are also found in foods like bread, cookies, honey, coffee, wine, beer and soft drinks.
Research shows that diabetics are found to have two to six times the level of MGOs in their blood than non-diabetics. Although AGEs are part of the aging process, their damaging impacts are accelerated by high blood sugar. They are dangerous because they accumulate in organs contributing to the development of insulin resistance and diabetic complications. AGEs are also linked to Parkinson’s and Alzheimer’s diseases.
“Glycation of protein contributes to the known health complications from diabetes,” said Dr. Sang, whose previous research demonstrated the anti-cancer effects of ginger as well as its ability to prevent anemia induced by kidney disease or chemotherapy. “Glycation is life threatening far more than high blood sugar itself to diabetic patients.”
Dr. Sang’s study demonstrated in vitro that within an hour both ginger compounds “trapped” 80% of the MGOs present forming the less reactive and harmful compounds mono-MGO adducts, 6S-MGO and 6G-MGO. The ginger finding support Sang’s research on flavanols in tea, chalcone from apples and isoflavone from soy. He found that the ability of these compounds to trap MGOs and prevent cellular damage began an hour after exposure and lasted up to six days in vitro.
“The flavonoids and ginger are very effective at this trapping,” Dr. Sang said. “We found that they do have an additive effect. When more than one compound is present, they work together to trap dicarbonyl compounds like MGO.”
Dr. Sang’s goal is to develop plant-based compounds as an alternative to therapeutic treatments for type 2 diabetes and as possible treatments for Alzheimer’s disease.
“Drugs have side effects,” he said. “Dietary compounds do not. So in the long term, we want to determine the efficacy in humans of using different plant compounds to prevent diabetic complications.”
These research findings follow an announcement by other NCRC scientists published in the Journal Nutrition that offered new insight into how antioxidants work in the human body.